Experimental Studies on Mechanical Behavior of TIG and Friction Stir Welded AA5083 -AA7075 Dissimilar Aluminum Alloys

نویسندگان

چکیده

Welding is a suitable and better process to manufacture complex objects for aerospace, naval, automotive structures. Service conditions complexity in load acting force the manufactures make joints between dissimilar materials. Thus, there need efficient welding techniques form sound an understanding of imperfections their effects. In this study attempt has been made joining feasibility aluminum alloys by two different techniques, namely, tungsten inert gas (TIG) friction stir (FSW). Dissimilar AA5083-O AA7075-T651 successfully joined considered techniques. Metallurgical mechanical characteristics fabricated weld are studied at currents (80–120 amp) TIG various rotational speeds (800, 1000, 1100, 1200, 1400 rpm) with constant traverse speed FSW. Weld FSW exhibit superior tensile strength, whereas joint line microhardness samples higher than ones.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Post-weld Heat Treatment on Joint Properties of Dissimilar Friction Stir Welded AA2024 and AA7075 Aluminum Alloys

In present study, the effect of heat treatment after friction stir welding dissimilar welds T6-7075 and T4-2024 aluminum alloys were investigated. Friction stir welding was performed at a constant rotation speed of 1140 rpm and welding speed 32 mm/min. After welding samples are taken under various heat treatment processes at different aging temperature and time period. Microstructural observati...

متن کامل

Effect of Post-weld Heat Treatment on Joint Properties of Dissimilar Friction Stir Welded AA2024 and AA7075 Aluminum Alloys

In present study, the effect of heat treatment after friction stir welding dissimilar welds T6-7075 and T4-2024 aluminum alloys were investigated. Friction stir welding was performed at a constant rotation speed of 1140 rpm and welding speed 32 mm/min. After welding samples are taken under various heat treatment processes at different aging temperature and time period. Microstructural observati...

متن کامل

Effect of tool position on microstructural and mechanical properties of friction stir butt welded joint of AA2024–AA7075 dissimilar alloys

In this research, butt joining of Al2024 and Al7075 plates were performed by Friction Stir Welding (FSW) and the effect of tool position on microstructural and mechanical properties in about 1 mm from center line of joint towards the advancing side (AS) and the retreating side (RS) was investigated at three positions of +1, 0, -1 mm. In this regard, the plates of Al2024 and Al7075 were selected...

متن کامل

Experimental Investigations on Microstructural and Mechanical Behavior of Friction Stir Welded Aluminum Matrix Composite

The welding of materials by applying Friction Stir Welding technique is a new solid-state joining technique. The main advantage of this method compared to the traditional joining process is that it minimizes problem-related to metal resolidification as the method incorporates no melting phase. In this experimental work, the effect of friction stir welding (FSW) technique on the microstructu...

متن کامل

Effect of Heat Input on Tensile Properties of Friction Stir Welded AA6061-T6 and AA7075-T6 Dissimilar Aluminum Alloy Joints

Friction Stir Welding (FSW) is a solid state process widely used to join dissimilar aluminium alloys. High quality and strength joints can be fabricated using this technique when compared to other conventional methods. The welding parameters play major role in determining the quality of the weld. This paper aims in presenting the effect of heat input on tensile properties of the joints between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Materials Science and Engineering

سال: 2023

ISSN: ['1687-8434', '1687-8442']

DOI: https://doi.org/10.1155/2023/8622525